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Abstract—We consider a multi-pair multi-antenna relay sys-
tem, delivering data from multi-sources to their destinations
simultaneously with the help of a massive antenna relay. We
analyze the spectral efficiency and power scaling laws under
perfect and imperfect channel state information (CSI) for zero-
forcing relay beamforming. The analysis shows that the transmit
power can be scaled down by 1/M< at the users and by 1/M p
at the relay as the number M of relay antennas increases, where
(o, 8) = (t,1) or (1,¢t) for 0 < ¢ < 1 in the case of perfect CSI
and (o, 3) = (t,1 —t) or (1/2,t) for 0 < ¢ < 1/2 in the case of
imperfect CSI.

Index Terms—Massive antennas, multiuser relay communica-
tions, power scaling law, spectral efficiency, zero forcing

I. INTRODUCTION

Multi-antenna relays have been introduced to multi-device
communication systems to coordinate the data transfer among
the devices in an efficient way [1], [2]. Such high complexity
relays can be deployed for machine-type communications to
support the concurrent data transfer among the device pairs in
local areas [3], which will be called multi-pair multi-antenna
relay (MP-MAR) system in the sequel. The MP-MAR system
is closely related to a multiuser multiple-input multiple-output
(MU-MIMO) system since the relay in a MP-MAR system
has a complexity comparable to the BS in MU-MIMO.

Recently, massive MU-MIMO employing large-scale an-
tenna arrays at a BS has received huge interest due to
the capability of interference suppression and power saving
even with suboptimal linear receivers [4]-[6]. Maximal ratio
transmission (MRT) and zero-forcing (ZF) beamforming have
been studied for the downlink of a massive MU-MIMO system
with perfect and imperfect channel state information (CSI) [5].
Similarly, maximal ratio combining (MRC), ZF, and minimum
mean square error (MMSE) beamforming have been studied
for the uplink, where the power scaling law is derived to
quantify the power efficiency of massive BS antennas [6]. Like
massive MU-MIMO, a relay with massive antenna arrays can
be deployed in the MP-MAR system as in [7]-[9]. The studies
in [7], [8] obtain respectively the sum rate of one-way relaying
(OWR) and two-way relaying (TWR) with infinite number of
relay antennas when MRC/MRT and ZF/ZF are employed for
receive/transmit relay beamforming under perfect CSI. The
achievable sum rate achievable with a finite number of relay
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antennas is derived in [9], but it is obtained only for TWR with
MRC/MRT relay beamforming when perfect CSI is available
at both the relay and destinations.

This letter revisits the massive MP-MAR system of [7]
with ZF/ZF relay beamforming, which is attractable for finite
numbers of relay antennas from a performance perspective.
For both cases of perfect and imperfect CSI at the relay, we
provide a more accurate and comprehensive analysis on the
system performance in terms of the spectral efficiency (SE)
valid for any finite number of relay antennas and the power
scaling laws for large number of relay antennas.

Notations: The superscripts (-)%, (-)*, (1), and (-)~!
denote the transpose, complex conjugate, Hermitian transpose,
and inverse, respectively. The matrix I,, represents the n X n
identity matrix, 0,,«, indicates the m x n all-zero matrix,
and diag (a) represents the diagonal matrix having a for the
diagonal vector. The operations Tr{A}, ||A|r, and [A],
represent the trace, Frobenius-norm, and (k,[)th element of
a matrix A, respectively. In addition, ~ denotes ‘distributed
as’, E[] denotes the expectation, Rap = E[ab™] refers to
the vector correlation matrix, and CN(A,X) indicates the
complex Gaussian distributed matrix with mean A = E[A]

and covariance matrix X = E [Vec (A — A) vec (A - A)H] R
where vec (A) denotes the column vector obtained by stacking
the columns of a matrix A.

II. SYSTEM MODEL
A. Overall Description

Consider the massive MP-MAR system in Fig 1, which
consists of K device pairs {(Sg,Dx)}E, and a relay R.
The infrastructure-deployed relay is equipped with M (> K)
antennas whilst the sensor-like devices are equipped with
a single antenna. The relay help source devices {Sj}X_,
deliver data to their destinations {D, }/*_, in two time phases.
The channel responses from the sources to the relay and
from the relay to the destinations are arranged in matri-
ces Gi = [g11 912 g1x] € CM*K and G} =
(921 920 -+ Go.x)" € CE*M respectively, with g, ; and
g2, denoting the M x 1 channel vectors between source k and
the relay and between the relay and destination k, respectively.
The channel matrices are modeled as

GZ:H193/2NCN(OJV[XKvﬂZ(@II\/[) (l)

for ¢ = 1,2, where H; ~ CN(Onxk, k) represents
Rayleigh fading, €2; = diag([wi1 wiz2 -+ w; i]) reflects the
path-poss component, and ® denotes the Kronecker product.



Fig. 1. Massive MP-MAR system.

In the first time phase, all sources transmit their symbols
to the relay at transmit power Pg. The received signal at the
relay is written as

R = VPsGix + ng, 2

where & = [71 29 -+ 2x|T ~ CN(0gx1,Ix) is the symbol
vector from K sources and nr ~ CN(Oprx1,NoI ) is the
noise vector at the relay. The relay transforms the received
signal as

3)

SR = WZR,

where W = \/PT?W is an M x M relay processing matrix

- 2
with power scaling factor § = E {HWzRH } satisfying the
relay power constraint Pr in a long-term average.
In the second time phase, the relay forwards sy to the

destinations. The received signals at the destinations can be
arranged in a vector as

Yp = \/PSG§FWG1m + GQTWnR + np, 4)

where np ~ CN (0k 1, NoI k) is the vector of the noises at
the destinations.

B. Relay Processing with Imperfect CSI

The relay obtains CSI by performing linear MMSE
(LMMSE) channel estimation using orthogonal pilot se-
quences of length 7,, transmitted at power Py, [6]. The LMMSE
channel estimate G on G; can be expressed as Gz =G;+E,,
where E; is the error matrix with E {vec(EZ)vec(GZ)H ] =
OmkxmEi- Since G; ~ CN(OMXK,Qi ® IM), Gz and F;
are also zero-mean complex Gaussian with vector correlation

vac(éi)vcc(é’i) = vac(G,;)vcc(éi) =Q; 1y o)
and Ryec(E;)vec(E;) = Ei @ I, respectively. Here, the
correlation matrices are detelrmined by the diagonal matrices
0 = Q. (Q + N T with @ = Rk
Q= Q (QZ+ )  with Gi = oy

for the kth diagonal element and =; = (Q + Tj’v et e
Wi,k
wi)k‘erp/No+1

With imperfect CSI {G;}2_,, the relay processing matrix
based on the ZF criterion for receiving and transmitting is
given by

N PNEY AT A% -1 ~
W= Ré (G2 G2) (G

zf

with 017 P = for the kth diagonal element.

D

where

ba=E||G(E16) (6Vé) @l ]
= P { W} 4 (PSTe{E1} + M) Tr { w1 T } )
with @, [( D) ]for2—12

C. End-to-End Performance

Let us now obtain the signal to interference-and-noise ratio
(SINR) at the destinations with imperfect CSI. The received
signal (4), after replacing G; by G,—E;, and W by W,
can be arranged as

yD =S8 + f + ﬁ? (8)
where
AT & N
£/ PsGy W ,;G1z = \/PsPr /b, &)

a AT o a N
f2VPS(BYW B — Gy Win By~ B] Wi Gh) @,(10)

and

~

~ A T TYx
n = G2 Wepng — E2 W engr + np

(1)

represent the desired signals, interference incurred by chan-
nel estimation errors, and effective noise at the destinations,
respectively.

The interference and noise have zero mean with correlation
matrices

Rys = 0 PsPr |TH{81 W1 + Tr{ 9] )5,
FTH{E T {\111\1:5}

[

)| (12)
and
Ras = 0 Prlo (@1 + Te {095 L 2] + NoT . (13)

The effective SINR at destination Dy, is then given by

PsPr
O, [Rff]k,k + O, [Rﬁﬁ}k,k
PsPr

5P PGt @ L GGt @ e

where (s = PsTr{E1} +N() and CR,k = PRUg,k +N0.

I'y =

(14)

III. SPECTRAL EFFICIENCY

This section analyzes the sum rate and spectral efficiency
(SE) of the massive MP-MAR system by applying the ap-
proach in [10] which assumes that interference and noise
are independent complex Gaussian random variables. The
achievable sum rate of the system is then lower-bounded as

K
1



from which a bound on the SE incorporating the pilot overhead
is also derived as
T —

T

K
T _
R > 2TTp ZlogQ(l +T%)
k=1

Seff = (16)

with pilot period T' determined by the coherence time of the
channel.
Let us now represent the effective SINR (14) explicitly by

o o HN -1
deriving ¥, = E (GinI ) } Recall that the columns of

K x M matrix G; are independent of each other and zero-
mean complex Gaussian with covariance matrix 2;. Hence,

ot

K2

G is a K x K complex Wishart matrix with M degrees of

~ ~H A
freedom and parameter matrix €2; and (G G») becomes
a K x K complex inverse Wlshart matrix with M degrees of

freedom and parameter matrix Q [1 1]. Therefore, we have

v, =——0, (17)

which leads to
PSPR(M - K )2

Fk = K :
(sP PsCr,k CsCRk
(M K) ( (jl ? + Z @1 ) + l; w1,1W2,1

(18)

In a special case of perfect CSI with w; ; = w;; and 02271 =0,
(18) becomes

PsPr(M — K)2

Fperf:
PrN PN, N§
(MK)($1k0+Z 5210>+Zw1lw21

. (19)

Thus, the SE with perfect CSI is also obtained by plugging
7, = 0 and Ty = " in (16).

IV. POWER SCALING LAWS

We now quantify how much power can be scaled down at
the devices and the relay as M grows large for a non-vanishing
SE. For this purpose, we rewrite the powers as Pg = P, =
% and Pr = %, where Fs and ER are fixed constants
and « and (3 are nonnegative real numbers indicting the power
scaling laws at the devices and relay, respectively.

When M — oo, the effective SINR (18) can be ap-

proximated, from M — K ~ M, (s =~ (g ~ No, and
TpEs“’f,k
N()MO‘ )

Wi | = as
E_i/'E2R M27afﬁ

Ty = o
k G1M1+O‘_’B + CLQM + G,3M20‘ ’

(20)

E
where a1 = TPESIZ%k, az =

1
Tp

L and a3 =
1 2,1

M=

~

K

2

Y] > = L . For non-vanishing T';, with M — oo, we
7 ‘*’1,1“’2,1

PS =1
should have min(1 — 2a,1 —a — 3,2 —3a — 3) > 0 in (20),
or equivalently

0<a<1/2, 20, a+pB<1 2y

In particular, when (a, 8) = (1/2,t) or (t,1 —1t) for 0 < ¢ <
1/2, T, converges to a constant as M — oo: Specifically,

ESEQR
Ty — 0 — (22)
Er 18 1
™ Eswi + p l; w3 + E wi z‘*’zl
when (o, 8) = (1/2,1/2), Ty — T}’\/Efwfk when (a, B) =

TpEsEr K 1 '
(1/27t) f0r0§t< 1/2, and Fk—)pT ZWT
0 =1 2.1
when (o, 8) = (t,1 —t) for 0 < ¢ < 1/2.
On the other hand, with perfect CSI, (19) becomes

EJS\/'Ez‘R AIQ—a—ﬂ
chrf —~ 0
k ~

K
1-8 4 Es
N0w1 kM + l;

— (23)

Ml a+z

w21 w1, lwz i

when M — oo, which requires min(1—«, 1—5,2—a—8) > 0

or equivalently
0<a<1,0<pf<1l a+f<2 (24)

for non-vanishing TP with M — oo. In particular, TP

converges to a constant as M — oo when (o, §) = (1,¢) or
(t,1) for 0 <t < 1: Specifically, we have
ESE;R
perf /\/ﬂ
L = e e (25)
N0w1k+ ;wzz ;UJILUJQZ
when (a, 8) = (1,1), T} — 5wy when (o, 8) = (1,1)

K -1
for 0 <t <1,and [P — = (Z 1> when (a, ) =

w21
(t,1) for0 <t < 1.

The results imply that the power at the devices and relay can
be scaled down simultaneously up to by 1/v/M with imperfect
CSI and by 1/M with perfect CSL. In the case of perfect CSI,
Fperf is bounded for increasing M if either the power at the
dev1ces or the power at the relay is scaled down maximally
(o =1 or g =1). In case of imperfect CSI, I';, is bounded
for increasing M if the power at the device is scaled down
maximally (o = 1/2): If the power at the device is not scaled
down maximally (o < 1/2), the power at the relay can be
scaled further by 5 =1—a (> 1/2).

V. NUMERICAL RESULTS

The performance of the massive MP-MAR system is inves-
tigated through simulation and analysis with 7, = 2K and
T = 400 in symbols. All devices are assumed to be equi-
distant from the relay such that ; = I'x for i = 1,2. In the
figure, SNR= Pgs /N is used as the reference parameter.

Fig. 2 shows the SE as a function of SNR when K = 10
and Pr = KPs. In the figure, we compare the lower bounds
on the SE (denoted by ‘Anal’) given by (16) of the ZF/ZF
with perfect and imperfect CSI with their simulation results
(denoted by ‘Simul.’). The figure shows that the lower bounds
on the SE are almost indistinguishable from the simulation
results even with finite M. For the benchmark, we also pro-
vide the performance of the MRC/MRT relay beamforming,
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Fig. 2. SE as a function of SNR when K = 10, PR = KPs, and Q; = I .
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Fig. 3. SE as a function of the number K of device pairs when M = 100,
Pr = 2Pg, and SNR =0, 5, and 10 dB.
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Clearly, the SE increases with the number of relay antennas
and SNR. In addition, the ZF/ZF outperforms the MRC/MRT
significantly except for very low SNR values.

The SE is also shown for the number K of device pairs in
Fig. 3 when M = 100 and Pr = 2Ps. The SE increases with
K for small K since the gain from multiplexing the device
signals is larger than the loss from the interference. The SE de-
creases with K for large K due to the opposite reason. Hence,
an optimum number K * maximizing the SE is observed, which
tends to be smaller with imperfect CSI than with perfect CSI
since the imperfect CSI incurs a larger interference. Clearly,
the optimal K* increases as the SNR increases since a larger
SNR increases the gain from multiplexing the device signals.

The effect of power scaling («, 3) on the SE is shown in
Fig. 4 when K = 10, Es/./\/o =0 dB, and ER/NQ =5
dB. The SE with perfect CSI converges to a nonzero constant
value as M increases when (o, ) = (1,1), (0,1), and (1,0)
while it grows without a bound when (o, 3) = (1/3,2/3)
and (1/2,1/2). The SE with imperfect CSI diminishes to
zero when (v, 5) = (1,1) and (1,0) as M increases while it
converges to a nonzero constant value when (o, 8) = (0,1),
(1/3,2/3), and (1/2,1/2) although the convergence rate is
rather slow when («,5) = (1/3,2/3) and (1/2,1/2). We
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Fig. 4. SE as a function of the number M of relay antennas when K = 10,
Es/Np =0dB, and Eg/Np = 5 dB.

would like to note that the results of the figure comply with
the power scaling laws derived in Section IV.

VI. CONCLUSIONS

We have analyzed the performance of a multi-pair massive
antenna relaying system employing ZF/ZF relay beamforming.
For the system, a tight bound on the spectral efficiency and
the power scaling law are derived with perfect and imperfect
CSI. The results show that the bounds agree with simulation
results for a wide range of the number M of relay antennas. It
is also observed that the power at both the relay and devices
can be scaled down simultaneously up to by ﬁ with perfect

CSI and by ﬁ with imperfect CSL.
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